
* To appear: Intl J. High Performance Computing Applications, 15(3), 2001.

The Anatomy of the Grid
Enabling Scalable Virtual Organizations *
Ian Foster •¶ Carl Kesselman § Steven Tuecke •

{foster,tuecke}@mcs.anl.gov, carl@isi.edu

Abstract

“Grid” computing has emerged as an important new field, distinguished from conventional
distributed computing by its focus on large-scale resource sharing, innovative applications, and,
in some cases, high-performance orientation. In this article, we define this new field. First, we
review the “Grid problem,” which we define as flexible, secure, coordinated resource sharing
among dynamic collections of individuals, institutions, and resources—what we refer to as virtual
organizations. In such settings, we encounter unique authentication, authorization, resource
access, resource discovery, and other challenges. It is this class of problem that is addressed by
Grid technologies. Next, we present an extensible and open Grid architecture, in which
protocols, services, application programming interfaces, and software development kits are
categorized according to their roles in enabling resource sharing. We describe requirements that
we believe any such mechanisms must satisfy and we discuss the importance of defining a
compact set of intergrid protocols to enable interoperability among different Grid systems.
Finally, we discuss how Grid technologies relate to other contemporary technologies, including
enterprise integration, application service provider, storage service provider, and peer-to-peer
computing. We maintain that Grid concepts and technologies complement and have much to
contribute to these other approaches.

1 Introduction
The term “the Grid” was coined in the mid1990s to denote a proposed distributed computing
infrastructure for advanced science and engineering [34]. Considerable progress has since been
made on the construction of such an infrastructure (e.g., [10, 16, 46, 59]), but the term “Grid” has
also been conflated, at least in popular perception, to embrace everything from advanced
networking to artificial intelligence. One might wonder whether the term has any real substance
and meaning. Is there really a distinct “Grid problem” and hence a need for new “Grid
technologies”? If so, what is the nature of these technologies, and what is their domain of
applicability? While numerous groups have interest in Grid concepts and share, to a significant
extent, a common vision of Grid architecture, we do not see consensus on the answers to these
questions.

Our purpose in this article is to argue that the Grid concept is indeed motivated by a real and
specific problem and that there is an emerging, well-defined Grid technology base that addresses
significant aspects of this problem. In the process, we develop a detailed architecture and
roadmap for current and future Grid technologies. Furthermore, we assert that while Grid
technologies are currently distinct from other major technology trends, such as Internet,
enterprise, distributed, and peer-to-peer computing, these other trends can benefit significantly
from growing into the problem space addressed by Grid technologies.

• Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.
¶ Department of Computer Science, The University of Chicago, Chicago, IL 60657.
§ Information Sciences Institute, The University of Southern California, Marina del Rey, CA 90292.

The Anatomy of the Grid 2

The real and specific problem that underlies the Grid concept is coordinated resource sharing
and problem solving in dynamic, multi-institutional virtual organizations. The sharing that we
are concerned with is not primarily file exchange but rather direct access to computers, software,
data, and other resources, as is required by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, science, and engineering. This sharing is, necessarily,
highly controlled, with resource providers and consumers defining clearly and carefully just what
is shared, who is allowed to share, and the conditions under which sharing occurs. A set of
individuals and/or institutions defined by such sharing rules form what we call a virtual
organization (VO).

The following are examples of VOs: the application service providers, storage service providers,
cycle providers, and consultants engaged by a car manufacturer to perform scenario evaluation
during planning for a new factory; members of an industrial consortium bidding on a new
aircraft; a crisis management team and the databases and simulation systems that they use to plan
a response to an emergency situation; and members of a large, international, multiyear high-
energy physics collaboration. Each of these examples represents an approach to computing and
problem solving based on collaboration in computation- and data-rich environments.

As these examples show, VOs vary tremendously in their purpose, scope, size, duration,
structure, community, and sociology. Nevertheless, careful study of underlying technology
requirements leads us to identify a broad set of common concerns and requirements. In
particular, we see a need for highly flexible sharing relationships, ranging from client-server to
peer-to-peer; for sophisticated and precise levels of control over how shared resources are used,
including fine-grained and multi-stakeholder access control, delegation, and application of local
and global policies; for sharing of varied resources, ranging from programs, files, and data to
computers, sensors, and networks; and for diverse usage modes, ranging from single user to
multi-user and from performance sensitive to cost-sensitive and hence embracing issues of quality
of service, scheduling, co-allocation, and accounting.

Current distributed computing technologies do not address the concerns and requirements just
listed. For example, current Internet technologies address communication and information
exchange among computers but do not provide integrated approaches to the coordinated use of
resources at multiple sites for computation. Business-to-business exchanges [57] focus on
information sharing (often via centralized servers). So do virtual enterprise technologies,
although here sharing may eventually extend to applications and physical devices (e.g., [8]).
Enterprise distributed computing technologies such as CORBA and Enterprise Java enable
resource sharing within a single organization. The Open Group’s Distributed Computing
Environment (DCE) supports secure resource sharing across sites, but most VOs would find it too
burdensome and inflexible. Storage service providers (SSPs) and application service providers
(ASPs) allow organizations to outsource storage and computing requirements to other parties, but
only in constrained ways: for example, SSP resources are typically linked to a customer via a
virtual private network (VPN). Emerging “Distributed computing” companies seek to harness
idle computers on an international scale [31] but, to date, support only highly centralized access
to those resources. In summary, current technology either does not accommodate the range of
resource types or does not provide the flexibility and control on sharing relationships needed to
establish VOs.

It is here that Grid technologies enter the picture. Over the past five years, research and
development efforts within the Grid community have produced protocols, services, and tools that
address precisely the challenges that arise when we seek to build scalable VOs. These
technologies include security solutions that support management of credentials and policies when
computations span multiple institutions; resource management protocols and services that support
secure remote access to computing and data resources and the co-allocation of multiple resources;

The Anatomy of the Grid 3

information query protocols and services that provide configuration and status information about
resources, organizations, and services; and data management services that locate and transport
datasets between storage systems and applications.

Because of their focus on dynamic, cross-organizational sharing, Grid technologies complement
rather than compete with existing distributed computing technologies. For example, enterprise
distributed computing systems can use Grid technologies to achieve resource sharing across
institutional boundaries; in the ASP/SSP space, Grid technologies can be used to establish
dynamic markets for computing and storage resources, hence overcoming the limitations of
current static configurations. We discuss the relationship between Grids and these technologies
in more detail below.

In the rest of this article, we expand upon each of these points in turn. Our objectives are to (1)
clarify the nature of VOs and Grid computing for those unfamiliar with the area; (2) contribute to
the emergence of Grid computing as a discipline by establishing a standard vocabulary and
defining an overall architectural framework; and (3) define clearly how Grid technologies relate
to other technologies, explaining both why emerging technologies do not yet solve the Grid
computing problem and how these technologies can benefit from Grid technologies.

It is our belief that VOs have the potential to change dramatically the way we use computers to
solve problems, much as the web has changed how we exchange information. As the examples
presented here illustrate, the need to engage in collaborative processes is fundamental to many
diverse disciplines and activities: it is not limited to science, engineering and business activities.
It is because of this broad applicability of VO concepts that Grid technology is important.

2 The Emergence of Virtual Organizations
Consider the following four scenarios:

1. A company needing to reach a decision on the placement of a new factory invokes a
sophisticated financial forecasting model from an ASP, providing it with access to
appropriate proprietary historical data from a corporate database on storage systems
operated by an SSP. During the decision-making meeting, what-if scenarios are run
collaboratively and interactively, even though the division heads participating in the
decision are located in different cities. The ASP itself contracts with a cycle provider for
additional “oomph” during particularly demanding scenarios, requiring of course that
cycles meet desired security and performance requirements.

2. An industrial consortium formed to develop a feasibility study for a next-generation
supersonic aircraft undertakes a highly accurate multidisciplinary simulation of the entire
aircraft. This simulation integrates proprietary software components developed by
different participants, with each component operating on that participant’s computers and
having access to appropriate design databases and other data made available to the
consortium by its members.

3. A crisis management team responds to a chemical spill by using local weather and soil
models to estimate the spread of the spill, determining the impact based on population
location as well as geographic features such as rivers and water supplies, creating a short-
term mitigation plan (perhaps based on chemical reaction models), and tasking
emergency response personnel by planning and coordinating evacuation, notifying
hospitals, and so forth.

4. Thousands of physicists at hundreds of laboratories and universities worldwide come
together to design, create, operate, and analyze the products of a major detector at CERN,

The Anatomy of the Grid 4

the European high energy physics laboratory. During the analysis phase, they pool their
computing, storage, and networking resources to create a “Data Grid” capable of
analyzing petabytes of data [22, 44, 53].

These four examples differ in many respects: the number and type of participants, the types of
activities, the duration and scale of the interaction, and the resources being shared. But they also
have much in common, as discussed in the following (see also Figure 1).

In each case, a number of mutually distrustful participants with varying degrees of prior
relationship (perhaps none at all) want to share resources in order to perform some task.
Furthermore, sharing is about more than simply document exchange (as in “virtual enterprises”
[18]): it can involve direct access to remote software, computers, data, sensors, and other
resources. For example, members of a consortium may provide access to specialized software
and data and/or pool their computational resources.

Figure 1: An actual organization can participate in one or more VOs by sharing some or all of its
resources. We show three actual organizations (the ovals), and two VOs: P, which links participants in an
aerospace design consortium, and Q, which links colleagues who have agreed to share spare computing
cycles, for example to run ray tracing computations. The organization on the left participates in P, the one
to the right participates in Q, and the third is a member of both P and Q. The policies governing access to
resources (summarized in “quotes”) vary according to the actual organizations, resources, and VOs
involved.

Resource sharing is conditional: each resource owner makes resources available, subject to
constraints on when, where, and what can be done. For example, a participant in VO P of Figure
1 might allow VO partners to invoke their simulation service only for “simple” problems.
Resource consumers may also place constraints on properties of the resources they are prepared
to work with. For example, a participant in VO Q might accept only pooled computational
resources certified as “secure.” The implementation of such constraints requires mechanisms for
expressing policies, for establishing the identity of a consumer or resource (authentication), and
for determining whether an operation is consistent with applicable sharing relationships
(authorization).

Sharing relationships can vary dynamically over time, in terms of the resources involved, the
nature of the access permitted, and the participants to whom access is permitted. And these
relationships do not necessarily involve an explicitly named set of individuals, but rather may be

Multidisciplinary design
using programs & data at
multiple locations

P

“Participants in P
can run program
B”

“Participants in P
can run program
A”

Ray tracing using cycles
provided by cycle sharing
consortium

Q“Participants in
Q can use
cycles if idle
and budget not
exceeded”

“Participants in P
can read data D”

The Anatomy of the Grid 5

defined implicitly by the policies that govern access to resources. For example, an organization
might enable access by anyone who can demonstrate that they are a “customer” or a “student.”

The dynamic nature of sharing relationships means that we require mechanisms for discovering
and characterizing the nature of the relationships that exist at a particular point in time. For
example, a new participant joining VO Q must be able to determine what resources it is able to
access, the “quality” of these resources, and the policies that govern access.

Sharing relationships are often not simply client-server, but peer to peer: providers can be
consumers, and sharing relationships can exist among any subset of participants. Sharing
relationships may be combined to coordinate use across many resources, each owned by different
organizations. For example, in VO Q, a computation started on one pooled computational
resource may subsequently access data or initiate subcomputations elsewhere. The ability to
delegate authority in controlled ways becomes important in such situations, as do mechanisms for
coordinating operations across multiple resources (e.g., coscheduling).

The same resource may be used in different ways, depending on the restrictions placed on the
sharing and the goal of the sharing. For example, a computer may be used only to run a specific
piece of software in one sharing arrangement, while it may provide generic compute cycles in
another. Because of the lack of a priori knowledge about how a resource may be used,
performance metrics, expectations, and limitations (i.e., quality of service) may be part of the
conditions placed on resource sharing or usage.

These characteristics and requirements define what we term a virtual organization, a concept that
we believe is becoming fundamental to much of modern computing. VOs enable disparate
groups of organizations and/or individuals to share resources in a controlled fashion, so that
members may collaborate to achieve a shared goal.

3 The Nature of Grid Architecture
The establishment, management, and exploitation of dynamic, cross-organizational VO sharing
relationships require new technology. We structure our discussion of this technology in terms of
a Grid architecture that identifies fundamental system components, specifies the purpose and
function of these components, and indicates how these components interact with one another.

In defining a Grid architecture, we start from the perspective that effective VO operation requires
that we be able to establish sharing relationships among any potential participants.
Interoperability is thus the central issue to be addressed. In a networked environment,
interoperability means common protocols. Hence, our Grid architecture is first and foremost a
protocol architecture, with protocols defining the basic mechanisms by which VO users and
resources negotiate, establish, manage, and exploit sharing relationships. A standards-based open
architecture facilitates extensibility, interoperability, portability, and code sharing; standard
protocols make it easy to define standard services that provide enhanced capabilities. We can
also construct Application Programming Interfaces and Software Development Kits (see
Appendix for definitions) to provide the programming abstractions required to create a usable
Grid. Together, this technology and architecture constitute what is often termed middleware
(“the services needed to support a common set of applications in a distributed network
environment” [3]), although we avoid that term here due to its vagueness. We discuss each of
these points in the following.

Why is interoperability such a fundamental concern? At issue is our need to ensure that sharing
relationships can be initiated among arbitrary parties, accommodating new participants
dynamically, across different platforms, languages, and programming environments. In this
context, mechanisms serve little purpose if they are not defined and implemented so as to be

The Anatomy of the Grid 6

interoperable across organizational boundaries, operational policies, and resource types. Without
interoperability, VO applications and participants are forced to enter into bilateral sharing
arrangements, as there is no assurance that the mechanisms used between any two parties will
extend to any other parties. Without such assurance, dynamic VO formation is all but impossible,
and the types of VOs that can be formed are severely limited. Just as the Web revolutionized
information sharing by providing a universal protocol and syntax (HTTP and HTML) for
information exchange, so we require standard protocols and syntaxes for general resource
sharing.

Why are protocols critical to interoperability? A protocol definition specifies how distributed
system elements interact with one another in order to achieve a specified behavior, and the
structure of the information exchanged during this interaction. This focus on externals
(interactions) rather than internals (software, resource characteristics) has important pragmatic
benefits. VOs tend to be fluid; hence, the mechanisms used to discover resources, establish
identity, determine authorization, and initiate sharing must be flexible and lightweight, so that
resource-sharing arrangements can be established and changed quickly. Because VOs
complement rather than replace existing institutions, sharing mechanisms cannot require
substantial changes to local policies and must allow individual institutions to maintain ultimate
control over their own resources. Since protocols govern the interaction between components,
and not the implementation of the components, local control is preserved.

Why are services important? A service (see Appendix) is defined solely by the protocol that it
speaks and the behaviors that it implements. The definition of standard services—for access to
computation, access to data, resource discovery, coscheduling, data replication, and so forth—
allows us to enhance the services offered to VO participants and also to abstract away resource-
specific details that would otherwise hinder the development of VO applications.

Why do we also consider Application Programming Interfaces (APIs) and Software Development
Kits (SDKs)? There is, of course, more to VOs than interoperability, protocols, and services.
Developers must be able to develop sophisticated applications in complex and dynamic execution
environments. Users must be able to operate these applications. Application robustness,
correctness, development costs, and maintenance costs are all important concerns. Standard
abstractions, APIs, and SDKs can accelerate code development, enable code sharing, and enhance
application portability. APIs and SDKs are an adjunct to, not an alternative to, protocols.
Without standard protocols, interoperability can be achieved at the API level only by using a
single implementation everywhere—infeasible in many interesting VOs—or by having every
implementation know the details of every other implementation. (The Jini approach [6] of
downloading protocol code to a remote site does not circumvent this requirement.)

In summary, our approach to Grid architecture emphasizes the identification and definition of
protocols and services, first; and APIs and SDKs, second.

4 Grid Architecture Description
Our goal in describing our Grid architecture is not to provide a complete enumeration of all
required protocols (and services, APIs, and SDKs) but rather to identify requirements for general
classes of component. The result is an extensible, open architectural structure within which can
be placed solutions to key VO requirements. Our architecture and the subsequent discussion
organize components into layers, as shown in Figure 2. Components within each layer share
common characteristics but can build on capabilities and behaviors provided by any lower layer.

In specifying the various layers of the Grid architecture, we follow the principles of the
“hourglass model” [1]. The narrow neck of the hourglass defines a small set of core abstractions

The Anatomy of the Grid 7

and protocols (e.g., TCP and HTTP in the Internet), onto which many different high-level
behaviors can be mapped (the top of the hourglass), and which themselves can be mapped onto
many different underlying technologies (the base of the hourglass). By definition, the number of
protocols defined at the neck must be small. In our architecture, the neck of the hourglass
consists of Resource and Connectivity protocols, which facilitate the sharing of individual
resources. Protocols at these layers are designed so that they can be implemented on top of a
diverse range of resource types, defined at the Fabric layer, and can in turn be used to construct a
wide range of global services and application-specific behaviors at the Collective layer—so called
because they involve the coordinated (“collective”) use of multiple resources.

Our architectural description is high level and places few constraints on design and
implementation. To make this abstract discussion more concrete, we also list, for illustrative
purposes, the protocols defined within the Globus Toolkit [33], and used within such Grid
projects as the NSF’s National Technology Grid [59], NASA’s Information Power Grid [46],
DOE’s DISCOM [10], GriPhyN (www.griphyn.org), NEESgrid (www.neesgrid.org), Particle
Physics Data Grid (www.ppdg.net), and the European Data Grid (www.eu-datagrid.org). More
details will be provided in a subsequent paper.

Fabric

Collective

Resource

Connectivity

Application

Application

Link

Transport
Internet

In
te

rn
et

 P
ro

to
co

l
A
rc

h
it
ec

tu
re

G
ri
d
 P

ro
to

co
l
A
rc

h
it
ec

tu
re

Figure 2: The layered Grid architecture and its relationship to the Internet protocol architecture. Because
the Internet protocol architecture extends from network to application, there is a mapping from Grid layers
into Internet layers.

4.1 Fabric: Interfaces to Local Control
The Grid Fabric layer provides the resources to which shared access is mediated by Grid
protocols: for example, computational resources, storage systems, catalogs, network resources,
and sensors. A “resource” may be a logical entity, such as a distributed file system, computer
cluster, or distributed computer pool; in such cases, a resource implementation may involve
internal protocols (e.g., the NFS storage access protocol or a cluster resource management
system’s process management protocol), but these are not the concern of Grid architecture.

Fabric components implement the local, resource-specific operations that occur on specific
resources (whether physical or logical) as a result of sharing operations at higher levels. There is
thus a tight and subtle interdependence between the functions implemented at the Fabric level, on
the one hand, and the sharing operations supported, on the other. Richer Fabric functionality
enables more sophisticated sharing operations; at the same time, if we place few demands on
Fabric elements, then deployment of Grid infrastructure is simplified. For example, resource-
level support for advance reservations makes it possible for higher-level services to aggregate
(coschedule) resources in interesting ways that would otherwise be impossible to achieve.

The Anatomy of the Grid 8

However, as in practice few resources support advance reservation “out of the box,” a
requirement for advance reservation increases the cost of incorporating new resources into a Grid.

Experience suggests that at a minimum, resources should implement enquiry mechanisms that
permit discovery of their structure, state, and capabilities (e.g., whether they support advance
reservation) on the one hand, and resource management mechanisms that provide some control of
delivered quality of service, on the other. The following brief and partial list provides a resource-
specific characterization of capabilities.

• Computational resources: Mechanisms are required for starting programs and for
monitoring and controlling the execution of the resulting processes. Management
mechanisms that allow control over the resources allocated to processes are useful, as are
advance reservation mechanisms. Enquiry functions are needed for determining
hardware and software characteristics as well as relevant state information such as current
load and queue state in the case of scheduler-managed resources.

• Storage resources: Mechanisms are required for putting and getting files. Third-party
and high-performance (e.g., striped) transfers are useful [61]. So are mechanisms for
reading and writing subsets of a file and/or executing remote data selection or reduction
functions [14]. Management mechanisms that allow control over the resources allocated
to data transfers (space, disk bandwidth, network bandwidth, CPU) are useful, as are
advance reservation mechanisms. Enquiry functions are needed for determining
hardware and software characteristics as well as relevant load information such as
available space and bandwidth utilization.

• Network resources: Management mechanisms that provide control over the resources
allocated to network transfers (e.g., prioritization, reservation) can be useful. Enquiry
functions should be provided to determine network characteristics and load.

• Code repositories: This specialized form of storage resource requires mechanisms for
managing versioned source and object code: for example, a control system such as CVS.

• Catalogs: This specialized form of storage resource requires mechanisms for
implementing catalog query and update operations: for example, a relational database [9].

Globus Toolkit: The Globus Toolkit has been designed to use (primarily) existing fabric
components, including vendor-supplied protocols and interfaces. However, if a vendor does not
provide the necessary Fabric-level behavior, the Globus Toolkit includes the missing
functionality. For example, enquiry software is provided for discovering structure and state
information for various common resource types, such as computers (e.g., OS version, hardware
configuration, load [30], scheduler queue status), storage systems (e.g., available space), and
networks (e.g., current and predicted future load [52, 63]), and for packaging this information in a
form that facilitates the implementation of higher-level protocols, specifically at the Resource
layer. Resource management, on the other hand, is generally assumed to be the domain of local
resource managers. One exception is the General-purpose Architecture for Reservation and
Allocation (GARA) [36], which provides a “slot manager” that can be used to implement advance
reservation for resources that do not support this capability. Others have developed
enhancements to the Portable Batch System (PBS) [56] and Condor [49, 50] that support advance
reservation capabilities.

4.2 Connectivity: Communicating Easily and Securely
The Connectivity layer defines core communication and authentication protocols required for
Grid-specific network transactions. Communication protocols enable the exchange of data

The Anatomy of the Grid 9

between Fabric layer resources. Authentication protocols build on communication services to
provide cryptographically secure mechanisms for verifying the identity of users and resources.

Communication requirements include transport, routing, and naming. While alternatives
certainly exist, we assume here that these protocols are drawn from the TCP/IP protocol stack:
specifically, the Internet (IP and ICMP), transport (TCP, UDP), and application (DNS, OSPF,
RSVP, etc.) layers of the Internet layered protocol architecture [7]. This is not to say that in the
future, Grid communications will not demand new protocols that take into account particular
types of network dynamics.

With respect to security aspects of the Connectivity layer, we observe that the complexity of the
security problem makes it important that any solutions be based on existing standards whenever
possible. As with communication, many of the security standards developed within the context of
the Internet protocol suite are applicable.

Authentication solutions for VO environments should have the following characteristics [17]:

• Single sign on. Users must be able to “log on” (authenticate) just once and then have
access to multiple Grid resources defined in the Fabric layer, without further user
intervention.

• Delegation [35, 40, 45]. A user must be able to endow a program with the ability to run
on that user’s behalf, so that the program is able to access the resources on which the user
is authorized. The program should (optionally) also be able to conditionally delegate a
subset of its rights to another program (sometimes referred to as restricted delegation).

• Integration with various local security solutions: Each site or resource provider may
employ any of a variety of local security solutions, including Kerberos and Unix security.
Grid security solutions must be able to interoperate with these various local solutions.
They cannot, realistically, require wholesale replacement of local security solutions but
rather must allow mapping into the local environment.

• User-based trust relationships: In order for a user to use resources from multiple
providers together, the security system must not require each of the resource providers to
cooperate or interact with each other in configuring the security environment. For
example, if a user has the right to use sites A and B, the user should be able to use sites A
and B together without requiring that A’s and B’s security administrators interact.

Grid security solutions should also provide flexible support for communication protection (e.g.,
control over the degree of protection, independent data unit protection for unreliable protocols,
support for reliable transport protocols other than TCP) and enable stakeholder control over
authorization decisions, including the ability to restrict the delegation of rights in various ways.

Globus Toolkit: The Internet protocols listed above are used for communication. The public-key
based Grid Security Infrastructure (GSI) protocols [17, 35] are used for authentication,
communication protection, and authorization. GSI builds on and extends the Transport Layer
Security (TLS) protocols [29] to address most of the issues listed above: in particular, single sign-
on, delegation, integration with various local security solutions (including Kerberos [58]), and
user-based trust relationships. X.509-format identity certificates are used. Stakeholder control of
authorization is supported via an authorization toolkit that allows resource owners to integrate
local policies via a Generic Authorization and Access (GAA) control interface. Rich support for
restricted delegation is not provided in the current toolkit release (v1.1.4) but has been
demonstrated in prototypes.

The Anatomy of the Grid 10

4.3 Resource: Sharing Single Resources
The Resource layer builds on Connectivity layer communication and authentication protocols to
define protocols (and APIs and SDKs) for the secure negotiation, initiation, monitoring, control,
accounting, and payment of sharing operations on individual resources. Resource layer
implementations of these protocols call Fabric layer functions to access and control local
resources. Resource layer protocols are concerned entirely with individual resources and hence
ignore issues of global state and atomic actions across distributed collections; such issues are the
concern of the Collective layer discussed next.

Two primary classes of Resource layer protocols can be distinguished:

• Information protocols are used to obtain information about the structure and state of a
resource, for example, its configuration, current load, and usage policy (e.g., cost).

• Management protocols are used to negotiate access to a shared resource, specifying, for
example, resource requirements (including advanced reservation and quality of service)
and the operation(s) to be performed, such as process creation, or data access. Since
management protocols are responsible for instantiating sharing relationships, they must
serve as a “policy application point,” ensuring that the requested protocol operations are
consistent with the policy under which the resource is to be shared. Issues that must be
considered include accounting and payment. A protocol may also support monitoring the
status of an operation and controlling (for example, terminating) the operation.

While many such protocols can be imagined, the Resource (and Connectivity) protocol layers
form the neck of our hourglass model, and as such should be limited to a small and focused set.
These protocols must be chosen so as to capture the fundamental mechanisms of sharing across
many different resource types (for example, different local resource management systems), while
not overly constraining the types or performance of higher-level protocols that may be developed.

The list of desirable Fabric functionality provided in Section 4.1 summarizes the major features
required in Resource layer protocols. To this list we add the need for “exactly once” semantics
for many operations, with reliable error reporting indicating when operations fail.

Globus Toolkit: A small and mostly standards-based set of protocols is adopted. In particular:

• A Grid Resource Information Protocol (GRIP, currently based on the Lightweight
Directory Access Protocol: LDAP) is used to define a standard resource information
protocol and associated information model. An associated soft-state resource registration
protocol, the Grid Resource Registration Protocol (GRRP), is used to register resources
with Grid Index Information Servers, discussed in the next section [25].

• The HTTP-based Grid Resource Access and Management (GRAM) protocol is used for
allocation of computational resources and for monitoring and control of computation on
those resources [26].

• An extended version of the File Transfer Protocol, GridFTP, is a management protocol
for data access; extensions include use of Connectivity layer security protocols, partial
file access, and management of parallelism for high-speed transfers [4]. FTP is adopted
as a base data transfer protocol because of its support for third-party transfers and
because its separate control and data channels facilitate the implementation of
sophisticated servers.

• LDAP is also used as a catalog access protocol.

The Globus Toolkit defines client-side C and Java APIs and SDKs for each of these protocols.
Server-side SDKs and servers are also provided for each protocol, to facilitate the integration of

The Anatomy of the Grid 11

various resources (computational, storage, network) into the Grid. For example, the Grid
Resource Information Service (GRIS) implements server-side LDAP functionality, with callouts
allowing for publication of arbitrary resource information [25]. An important server-side element
of the overall Toolkit is the “gatekeeper,” which provides what is in essence a GSI-authenticated
“inetd” that speaks the GRAM protocol and can be used to dispatch various local operations. The
Generic Security Services (GSS) API [48] is used to acquire, forward, and verify authentication
credentials and to provide transport layer integrity and privacy within these SDKs and servers,
enabling substitution of alternative security services at the Connectivity layer.

4.4 Collective: Coordinating Multiple Resources
While the Resource layer is focused on interactions with a single resource, the next layer in the
architecture contains protocols and services (and APIs and SDKs) that are not associated with any
one specific resource but rather are global in nature and capture interactions across collections of
resources. For this reason, we refer to the next layer of the architecture as the Collective layer.
Because Collective components build on the narrow Resource and Connectivity layer “neck” in
the protocol hourglass, they can implement a wide variety of sharing behaviors without placing
new requirements on the resources being shared. For example:

• Directory services allow VO participants to discover the existence and/or properties of
VO resources. A directory service may allow its users to query for resources by name
and/or by attributes such as type, availability, or load [25]. Resource-level GRRP and
GRIP protocols are used to construct directories.

• Co-allocation, scheduling, and brokering services allow VO participants to request the
allocation of one or more resources for a specific purpose and the scheduling of tasks on
the appropriate resources. Examples include AppLeS [12, 13], Condor-G [37], Nimrod-
G [2], and the DRM broker [10].

• Monitoring and diagnostics services support the monitoring of VO resources for failure,
adversarial attack (“intrusion detection”), overload, and so forth.

• Data replication services support the management of VO storage (and perhaps also
network and computing) resources to maximize data access performance with respect to
metrics such as response time, reliability, and cost [4, 44].

• Grid-enabled programming systems enable familiar programming models to be used in
Grid environments, using various Grid services to address resource discovery, security,
resource allocation, and other concerns. Examples include Grid-enabled implementations
of the Message Passing Interface [32, 38] and manager-worker frameworks [21, 41].

• Workload management systems and collaboration frameworks—also known as problem
solving environments (“PSEs”)—provide for the description, use, and management of
multi-step, asynchronous, multi-component workflows

• Software discovery services discover and select the best software implementation and
execution platform based on the parameters of the problem being solved [20]. Examples
include NetSolve [19] and Ninf [54].

• Community authorization servers enforce community policies governing resource access,
generating capabilities that community members can use to access community resources.
These servers provide a global policy enforcement service by building on resource
information, and resource management protocols (in the Resource layer) and security
protocols in the Connectivity layer. Akenti [60] addresses some of these issues.

The Anatomy of the Grid 12

• Community accounting and payment services gather resource usage information for the
purpose of accounting, payment, and/or limiting of resource usage by community
members.

• Collaboratory services support the coordinated exchange of information within
potentially large user communities, whether synchronously or asynchronously. Examples
are CAVERNsoft [28, 47], Access Grid [23], and commodity groupware systems.

These examples illustrate the wide variety of Collective layer protocols and services that are
encountered in practice. Notice that while Resource layer protocols must be general in nature and
are widely deployed, Collective layer protocols span the spectrum from general purpose to highly
application or domain specific, with the latter existing perhaps only within specific VOs.

Collective functions can be implemented as persistent services, with associated protocols, or as
SDKs (with associated APIs) designed to be linked with applications. In both cases, their
implementation can build on Resource layer (or other Collective layer) protocols and APIs. For
example, Figure 3 shows a Collective co-allocation API and SDK (the middle tier) that uses a
Resource layer management protocol to manipulate underlying resources. Above this, we define
a co-reservation service protocol and implement a co-reservation service that speaks this protocol,
calling the co-allocation API to implement co-allocation operations and perhaps providing
additional functionality, such as authorization, fault tolerance, and logging. An application might
then use the co-reservation service protocol to request end-to-end network reservations.

Co-reservation Service

Application

Co-reservation Service API & SDK

Resource Mgmt API & SDK

Network
Resource

Network
Resource

Compute
Resource

Co-reservation Protocol

…

Resource Mgmt Protocol

Co-Allocation API & SDK

Fabric Layer
Resource Layer

Collective Layer

Figure 3: Collective and Resource layer protocols, services, APIs, and SDKS can be combined in a variety
of ways to deliver functionality to applications.

Collective components may be tailored to the requirements of a specific user community, VO, or
application domain, for example, an SDK that implements an application-specific coherency
protocol, or a co-reservation service for a specific set of network resources. Other Collective
components can be more general-purpose, for example, a replication service that manages an
international collection of storage systems for multiple communities, or a directory service
designed to enable the discovery of VOs. In general, the larger the target user community, the
more important it is that a Collective component’s protocol(s) and API(s) be standards based.

Globus Toolkit: In addition to the example services listed earlier in this section, many of which
build on Globus Connectivity and Resource protocols, we mention the Meta Directory Service,
which introduces Grid Information Index Servers (GIISs) to support arbitrary views on resource
subsets, with the LDAP information protocol used to access resource-specific GRISs to obtain
resource state and GRRP used for resource registration. Also replica catalog and replica

The Anatomy of the Grid 13

management services used to support the management of dataset replicas in a Grid environment
[4]. An online credential repository service (“MyProxy”) provides secure storage for proxy
credentials [55]. The DUROC co-allocation library provides an SDK and API for resource co-
allocation [27].

4.5 Applications
The final layer in our Grid architecture comprises the user applications that operate within a VO
environment. Figure 4 illustrates an application programmer’s view of Grid architecture.
Applications are constructed in terms of, and by calling upon, services defined at any layer. At
each layer, we have well-defined protocols that provide access to some useful service: resource
management, data access, resource discovery, and so forth. At each layer, APIs may also be
defined whose implementation (ideally provided by third-party SDKs) exchange protocol
messages with the appropriate service(s) to perform desired actions.

Applications

Fabric

Collective Services

Resource Services

Connectivity APIs

Collective APIs & SDKs

Resource APIs & SDKs

Collective Service Protocols

Resource Service Protocols

Connectivity Protocols

Languages & Frameworks

API/SDK

Service

Key:

Figure 4: APIs are implemented by software development kits (SDKs), which in turn use Grid protocols to
interact with network services that provide capabilities to the end user. Higher level SDKs can provide
functionality that is not directly mapped to a specific protocol, but may combine protocol operations with
calls to additional APIs as well as implement local functionality. Solid lines represent a direct call; dash
lines protocol interactions.

We emphasize that what we label “applications” and show in a single layer in Figure 4 may in
practice call upon sophisticated frameworks and libraries (e.g., the Common Component
Architecture [5], SciRun [20], CORBA [39, 51], Cactus [11], workflow systems [15]) and feature
much internal structure that would, if captured in our figure, expand it out to many times its
current size. These frameworks may themselves define protocols, services, and/or APIs. (E.g.,
the Simple Workflow Access Protocol [15].) However, these issues are beyond the scope of this
article, which addresses only the most fundamental protocols and services required in a Grid.

5 Grid Architecture in Practice
We use two examples to illustrate how Grid architecture functions in practice. Table 1 shows the
services that might be used to implement the multidisciplinary simulation and cycle sharing (ray
tracing) applications introduced in Figure 1. The basic Fabric elements are the same in each case:
computers, storage systems, and networks. Furthermore, each resource speaks standard

The Anatomy of the Grid 14

Connectivity protocols for communication and security, and Resource protocols for enquiry,
allocation, and management. Above this, each application uses a mix of generic and more
application-specific Collective services.

In the case of the ray tracing application, we assume that this is based on a high-throughput
computing system [37, 50]. In order to manage the execution of large numbers of largely
independent tasks in a VO environment, this system must keep track of the set of active and
pending tasks, locate appropriate resources for each task, stage executables to those resources,
detect and respond to various types of failure, and so forth. An implementation in the context of
our Grid architecture uses both domain-specific Collective services (dynamic checkpoint, task
pool management, failover) and more generic Collective services (brokering, data replication for
executables and common input files), as well as standard Resource and Connectivity protocols.
Condor-G represents a first step towards this goal [37].

Table 1: The Grid services used to construct the two example applications of Figure 1.

 Multidisciplinary Simulation Ray Tracing

Collective
(application-specific)

Solver coupler, distributed data
archiver

Checkpointing, job management,
failover, staging

Collective (generic) Resource discovery, resource brokering, system monitoring,
community authorization, certificate revocation

Resource Access to computation; access to data; access to information about
system structure, state, performance.

Connectivity Communication (IP), service discovery (DNS), authentication,
authorization, delegation

Fabric Storage systems, computers, networks, code repositories, catalogs

In the case of the multidisciplinary simulation application, the problems are quite different at the
highest level. Some application framework (e.g., CORBA, CCA) may be used to construct the
application from its various components. We also require mechanisms for discovering
appropriate computational resources, for reserving time on those resources, for staging
executables (perhaps), for providing access to remote storage, and so forth. Again, a number of
domain-specific Collective services will be used (e.g., solver coupler, distributed data archiver),
but the basic underpinnings are the same as in the ray tracing example.

6 “On the Grid”: The Need for Intergrid Protocols
Our Grid architecture establishes requirements for the protocols and APIs that enable sharing of
resources, services, and code. It does not otherwise constrain the technologies that might be used
to implement these protocols and APIs. In fact, it is quite feasible to define multiple
instantiations of key Grid architecture elements. For example, we can construct both Kerberos-
and PKI-based protocols at the Connectivity layer—and access these security mechanisms via the
same API, thanks to GSS-API (see Appendix). However, Grids constructed with these different
protocols are not interoperable and cannot share essential services—at least not without gateways.
For this reason, the long-term success of Grid computing requires that we select and achieve
widespread deployment of one set of protocols at the Connectivity and Resource layers—and, to
a lesser extent, at the Collective layer. Much as the core Internet protocols enable different
computer networks to interoperate and exchange information, these Intergrid protocols (as we

The Anatomy of the Grid 15

might call them) enable different organizations to interoperate and exchange or share resources.
Resources that speak these protocols can be said to be “on the Grid.” Standard APIs are also
highly useful if Grid code is to be shared. The identification of these Intergrid protocols and APIs
is beyond the scope of this article, although the Globus Toolkit represents an approach that has
had some success to date.

7 Relationships with Other Technologies
The concept of controlled, dynamic sharing within VOs is so fundamental that we might assume
that Grid-like technologies must surely already be widely deployed. In practice, however, while
the need for these technologies is indeed widespread, in a wide variety of different areas we find
only primitive and inadequate solutions to VO problems. In brief, current distributed computing
approaches do not provide a general resource-sharing framework that addresses VO requirements.
Grid technologies distinguish themselves by providing this generic approach to resource sharing.
This situation points to numerous opportunities for the application of Grid technologies.

7.1 World Wide Web
The ubiquity of Web technologies (i.e., IETF and W3C standard protocols—TCP/IP, HTTP,
SOAP, etc.—and languages, such as HTML and XML) makes them attractive as a platform for
constructing VO systems and applications. However, while these technologies do an excellent
job of supporting the browser-client-to-web-server interactions that are the foundation of today’s
Web, they lack features required for the richer interaction models that occur in VOs. For
example, today’s Web browsers typically use TLS for authentication, but do not support single
sign-on or delegation.

Clear steps can be taken to integrate Grid and Web technologies. For example, the single sign-on
capabilities provided in the GSI extensions to TLS would, if integrated into Web browsers, allow
for single sign-on to multiple Web servers. GSI delegation capabilities would permit a browser
client to delegate capabilities to a Web server so that the server could act on the client’s behalf.
These capabilities, in turn, make it much easier to use Web technologies to build “VO Portals”
that provide thin client interfaces to sophisticated VO applications. WebOS addresses some of
these issues [62].

7.2 Application and Storage Service Providers
Application service providers, storage service providers, and similar hosting companies typically
offer to outsource specific business and engineering applications (in the case of ASPs) and
storage capabilities (in the case of SSPs). A customer negotiates a service level agreement that
defines access to a specific combination of hardware and software. Security tends to be handled
by using VPN technology to extend the customer’s intranet to encompass resources operated by
the ASP or SSP on the customer’s behalf. Other SSPs offer file-sharing services, in which case
access is provided via HTTP, FTP, or WebDAV with user ids, passwords, and access control lists
controlling access.

From a VO perspective, these are low-level building-block technologies. VPNs and static
configurations make many VO sharing modalities hard to achieve. For example, the use of VPNs
means that it is typically impossible for an ASP application to access data located on storage
managed by a separate SSP. Similarly, dynamic reconfiguration of resources within a single ASP
or SPP is challenging and, in fact, is rarely attempted. The load sharing across providers that
occurs on a routine basis in the electric power industry is unheard of in the hosting industry. A
basic problem is that a VPN is not a VO: it cannot extend dynamically to encompass other

The Anatomy of the Grid 16

resources and does not provide the remote resource provider with any control of when and
whether to share its resources.

The integration of Grid technologies into ASPs and SSPs can enable a much richer range of
possibilities. For example, standard Grid services and protocols can be used to achieve a
decoupling of the hardware and software. A customer could negotiate an SLA for particular
hardware resources and then use Grid resource protocols to dynamically provision that hardware
to run customer-specific applications. Flexible delegation and access control mechanisms would
allow a customer to grant an application running on an ASP computer direct, efficient, and
securely access to data on SSP storage—and/or to couple resources from multiple ASPs and SSPs
with their own resources, when required for more complex problems. A single sign-on security
infrastructure able to span multiple security domains dynamically is, realistically, required to
support such scenarios. Grid resource management and accounting/payment protocols that allow
for dynamic provisioning and reservation of capabilities (e.g., amount of storage, transfer
bandwidth, etc.) are also critical.

7.3 Enterprise Computing Systems
Enterprise development technologies such as CORBA, Enterprise Java Beans, Java 2 Enterprise
Edition, and DCOM are all systems designed to enable the construction of distributed
applications. They provide standard resource interfaces, remote invocation mechanisms, and
trading services for discovery and hence make it easy to share resources within a single
organization. However, these mechanisms address none of the specific VO requirements listed
above. Sharing arrangements are typically relatively static and restricted to occur within a single
organization. The primary form of interaction is client-server, rather than the coordinated use of
multiple resources.

These observations suggest that there should be a role for Grid technologies within enterprise
computing. For example, in the case of CORBA, we could construct an object request broker
(ORB) that uses GSI mechanisms to address cross-organizational security issues. We could
implement a Portable Object Adaptor that speaks the Grid resource management protocol to
access resources spread across a VO. We could construct Grid-enabled Naming and Trading
services that use Grid information service protocols to query information sources distributed
across large VOs. In each case, the use of Grid protocols provides enhanced capability (e.g.,
interdomain security) and enables interoperability with other (non-CORBA) clients. Similar
observations can be made about Java and Jini. For example, Jini’s protocols and implementation
are geared toward a small collection of devices. A “Grid Jini” that employed Grid protocols and
services would allow the use of Jini abstractions in a large-scale, multi-enterprise environment.

7.4 Internet and Peer-to-Peer Computing
Peer-to-peer computing (as implemented, for example, in the Napster, Gnutella, and Freenet [24]
file sharing systems) and Internet computing (as implemented, for example by the SETI@home,
Parabon, and Entropia systems) is an example of the more general (“beyond client-server”)
sharing modalities and computational structures that we referred to in our characterization of
VOs. As such, they have much in common with Grid technologies.

In practice, we find that the technical focus of work in these domains has not overlapped
significantly to date. One reason is that peer-to-peer and Internet computing developers have so
far focused entirely on vertically integrated (“stovepipe”) solutions, rather than seeking to define
common protocols that would allow for shared infrastructure and interoperability. (This is, of
course, a common characteristic of new market niches, in which participants still hope for a

The Anatomy of the Grid 17

monopoly.) Another is that the forms of sharing targeted by various applications are quite
limited, for example, file sharing with no access control, and computational sharing with a
centralized server.

As these applications become more sophisticated and the need for interoperability becomes
clearer we will see a strong convergence of interests between peer-to-peer, Internet, and Grid
computing [31]. For example, single sign-on, delegation, and authorization technologies become
important when computational and data sharing services must interoperate, and the policies that
govern access to individual resources become more complex.

8 Other Perspectives on Grids
The perspective on Grids and VOs presented in this article is of course not the only view that can
be taken. We summarize here—and critique—some alternative perspectives (given in italics).

The Grid is a next-generation Internet. “The Grid” is not an alternative to “the Internet”: it is
rather a set of additional protocols and services that build on Internet protocols and services to
support the creation and use of computation- and data-enriched environments. Any resource that
is “on the Grid” is also, by definition, “on the Net.”

The Grid is a source of free cycles. Grid computing does not imply unrestricted access to
resources. Grid computing is about controlled sharing. Resource owners will typically want to
enforce policies that constrain access according to group membership, ability to pay, and so forth.
Hence, accounting is important, and a Grid architecture must incorporate resource and collective
protocols for exchanging usage and cost information, as well as for exploiting this information
when deciding whether to enable sharing.

The Grid requires a distributed operating system. In this view (e.g., see [42]), Grid software
should define the operating system services to be installed on every participating system, with
these services providing for the Grid what an operating system provides for a single computer:
namely, transparency with respect to location, naming, security, and so forth. Put another way,
this perspective views the role of Grid software as defining a virtual machine. However, we feel
that this perspective is inconsistent with our primary goals of broad deployment and
interoperability. We argue that the appropriate model is rather the Internet Protocol suite, which
provides largely orthogonal services that address the unique concerns that arise in networked
environments. The tremendous physical and administrative heterogeneities encountered in Grid
environments means that the traditional transparencies are unobtainable; on the other hand, it
does appear feasible to obtain agreement on standard protocols. The architecture proposed here is
deliberately open rather than perscriptive: it defines a compact and minimal set of protocols that a
resource must speak to be “on the Grid”; beyond this, it seeks only to provide a framework within
which many behaviors can be specified.

The Grid requires new programming models. Programming in Grid environments introduces
challenges that are not encountered in sequential (or parallel) computers, such as multiple
administrative domains, new failure modes, and large variations in performance. However, we
argue that these are incidental, not central, issues and that the basic programming problem is not
fundamentally different. As in other contexts, abstraction and encapsulation can reduce
complexity and improve reliability. But, as in other contexts, it is desirable to allow a wide
variety of higher-level abstractions to be constructed, rather than enforcing a particular approach.
So, for example, a developer who believes that a universal distributed shared memory model can
simplify Grid application development should implement this model in terms of Grid protocols,
extending or replacing those protocols only if they prove inadequate for this purpose. Similarly, a

The Anatomy of the Grid 18

developer who believes that all Grid resources should be presented to users as objects needs
simply to implement an object-oriented “API” in terms of Grid protocols.

The Grid makes high-performance computers superfluous. The hundreds, thousands, or even
millions of processors that may be accessible within a VO represent a significant source of
computational power, if they can be harnessed in a useful fashion. This does not imply, however,
that traditional high-performance computers are obsolete. Many problems require tightly coupled
computers, with low latencies and high communication bandwidths; Grid computing may well
increase, rather than reduce, demand for such systems by making access easier.

9 Summary
We have provided in this article a concise statement of the “Grid problem,” which we define as
controlled and coordinated resource sharing and resource use in dynamic, scalable virtual
organizations. We have also presented both requirements and a framework for a Grid
architecture, identifying the principal functions required to enable sharing within VOs and
defining key relationships among these different functions. Finally, we have discussed in some
detail how Grid technologies relate to other important technologies.

We hope that the vocabulary and structure introduced in this document will prove useful to the
emerging Grid community, by improving understanding of our problem and providing a common
language for describing solutions. We also hope that our analysis will help establish connections
among Grid developers and proponents of related technologies.

The discussion in this paper also raises a number of important questions. What are appropriate
choices for the Intergrid protocols that will enable interoperability among Grid systems? What
services should be present in a persistent fashion (rather than being duplicated by each
application) to create usable Grids? And what are the key APIs and SDKs that must be delivered
to users in order to accelerate development and deployment of Grid applications? We have our
own opinions on these questions, but the answers clearly require further research.

Acknowledgments
We are grateful to numerous colleagues for discussions on the topics covered here, in particular
Bill Allcock, Randy Butler, Ann Chervenak, Karl Czajkowski, Steve Fitzgerald, Bill Johnston,
Miron Livny, Joe Mambretti, Reagan Moore, Harvey Newman, Laura Pearlman, Rick Stevens,
Gregor von Laszewski, Rich Wellner, and Mike Wilde, and participants in the workshop on
Clusters and Computational Grids for Scientific Computing (Lyon, September 2000) and the 4th
Grid Forum meeting (Boston, October 2000), at which early versions of these ideas were
presented.

This work was supported in part by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department
of Energy, under Contract W-31-109-Eng-38; by the Defense Advanced Research Projects
Agency under contract N66001-96-C-8523; by the National Science Foundation; and by the
NASA Information Power Grid program.

Appendix: Definitions
We define here four terms that are fundamental to the discussion in this article but are frequently
misunderstood and misused, namely, protocol, service, SDK, and API.

The Anatomy of the Grid 19

Protocol. A protocol is a set of rules that end points in a telecommunication system use when
exchanging information. For example:

• The Internet Protocol (IP) defines an unreliable packet transfer protocol.

• The Transmission Control Protocol (TCP) builds on IP to define a reliable data delivery
protocol.

• The Transport Layer Security (TLS) Protocol [29] defines a protocol to provide privacy
and data integrity between two communicating applications. It is layered on top of a
reliable transport protocol such as TCP.

• The Lightweight Directory Access Protocol (LDAP) builds on TCP to define a query-
response protocol for querying the state of a remote database.

An important property of protocols is that they admit to multiple implementations: two end points
need only implement the same protocol to be able to communicate. Standard protocols are thus
fundamental to achieving interoperability in a distributed computing environment.

A protocol definition also says little about the behavior of an entity that speaks the protocol. For
example, the FTP protocol definition indicates the format of the messages used to negotiate a file
transfer but does not make clear how the receiving entity should manage its files.

As the above examples indicate, protocols may be defined in terms of other protocols.

Service. A service is a network-enabled entity that provides a specific capability, for example,
the ability to move files, create processes, or verify access rights. A service is defined in terms of
the protocol one uses to interact with it and the behavior expected in response to various protocol
message exchanges (i.e., “service = protocol + behavior.”). A service definition may permit a
variety of implementations. For example:

• An FTP server speaks the File Transfer Protocol and supports remote read and write
access to a collection of files. One FTP server implementation may simply write to and
read from the server’s local disk, while another may write to and read from a mass
storage system, automatically compressing and uncompressing files in the process. From
a Fabric-level perspective, the behaviors of these two servers in response to a store
request (or retrieve request) are very different. From the perspective of a client of this
service, however, the behaviors are indistinguishable; storing a file and then retrieving
the same file will yield the same results regardless of which server implementation is
used.

• An LDAP server speaks the LDAP protocol and supports response to queries. One
LDAP server implementation may respond to queries using a database of information,
while another may respond to queries by dynamically making SNMP calls to generate the
necessary information on the fly.

A service may or may not be persistent (i.e., always available), be able to detect and/or recover
from certain errors; run with privileges, and/or have a distributed implementation for enhanced
scalability. If variants are possible, then discovery mechanisms that allow a client to determine
the properties of a particular instantiation of a service are important.

Note also that one can define different services that speak the same protocol. For example, in the
Globus Toolkit, both the replica catalog [4] and information service [25] use LDAP.

API. An Application Program Interface (API) defines a standard interface (e.g., set of subroutine
calls, or objects and method invocations in the case of an object-oriented API) for invoking a
specified set of functionality. For example:

The Anatomy of the Grid 20

• The Generic Security Service (GSS) API [48] defines standard functions for verifying
identify of communicating parties, encrypting messages, and so forth.

• The Message Passing Interface API [43] defines standard interfaces, in several languages,
to functions used to transfer data among processes in a parallel computing system.

An API may define multiple language bindings or use an Interface Definition Language. The
language may be a conventional programming language such as C or Java, or it may be a shell
interface. In the latter case, the API refers to particular a definition of command line arguments
to the program, the input and output of the program, and the exit status of the program. An API
normally will specify a standard behavior but can admit to multiple implementations.

It is important to understand the relationship between APIs and protocols. A protocol definition
says nothing about the APIs that might be called from within a program to generate protocol
messages. A single protocol may have many APIs; a single API may have multiple
implementations that target different protocols. In brief, standard APIs enable portability;
standard protocols enable interoperability. For example, both public key and Kerberos bindings
have been defined for the GSS-API [48]. Hence, a program that uses GSS-API calls for
authentication operations can operate in either a public key or a Kerberos environment without
change. On the other hand, if we want a program to operate in a public key and a Kerberos
environment at the same time, then we need a standard protocol that supports interoperability of
these two environments. See Figure 5.

GSS-API

Kerberos PKIor
Kerberos PKI

Domain A Domain B

GSP

Figure 5: On the left, an API is used to develop applications that can target either Kerberos or PKI security
mechanisms. On the right, protocols (the Grid security protocols provided by the Globus Toolkit) are used
to enable interoperability between Kerberos and PKI domains.

SDK. The term software development kit (SDK) denotes a set of code designed to be linked
with, and invoked from within, an application program to provide specified functionality. An
SDK typically implements an API. If an API admits to multiple implementations, then there will
be multiple SDKs for that API. Some SDKs provide access to services via a particular protocol.
For example:

• The OpenLDAP release includes an LDAP client SDK, which contains a library of
functions that can be used from a C or C++ application to perform queries to an LDAP
service.

• JNDI is a Java SDK, which contains functions that can be used to perform queries to an
LDAP service.

• Different SDKs implement GSS-API using the TLS and Kerberos protocols, respectively.

There may be multiple SDKs, for example from multiple vendors, which implement a particular
protocol. Further, for client-server oriented protocols, there may be separate client SDKs for use
by applications that want to access a service, and server SDKs for use by service implementers
that want to implement particular, customized service behaviors.

The Anatomy of the Grid 21

An SDK need not speak any protocol. For example, an SDK that provides numerical functions
may act entirely locally and not need to speak to any services to perform its operations.

Bibliography

1. Realizing the Information Future: The Internet and Beyond. National Academy Press,
1994.

2. Abramson, D., Sosic, R., Giddy, J. and Hall, B. Nimrod: A Tool for Performing
Parameterised Simulations Using Distributed Workstations. In Proc. 4th IEEE Symp. on
High Performance Distributed Computing, 1995.

3. Aiken, R., Carey, M., Carpenter, B., Foster, I., Lynch, C., Mambretti, J., Moore, R.,
Strasnner, J. and Teitelbaum, B. Network Policy and Services: A Report of a Workshop
on Middleware. IETF, RFC, 2000.

4. Allcock, W., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C., Meder,
S., Nefedova, V., Quesnel, D. and Tuecke, S., Secure, Efficient Data Transport and
Replica Management for High-Performance Data-Intensive Computing. In Mass Storage
Conference, (2001)

5. Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L. and Parker, S.
Toward a Common Component Architecture for High Performance Scientific
Computing. In Proc. 8th IEEE Symp. on High Performance Distributed Computing,
1999.

6. Arnold, K., O'Sullivan, B., Scheifler, R.W., Waldo, J. and Wollrath, A. The Jini
Specification. Addison-Wesley, 1999.

7. Baker, F. Requirements for IP Version 4 Routers. IETF, RFC, 1995.
8. Barry, J., Aparicio, M., Durniak, T., Herman, P., Karuturi, J., Woods, C., Gilman, C.,

Ramnath, R. and Lam, H., NIIIP-SMART: An Investigation of Distributed Object
Approaches to Support MES Development and Deployment in a Virtual Enterprise. In
2nd Intl Enterprise Distributed Computing Workshop, (1998), IEEE Press

9. Baru, C., Moore, R., Rajasekar, A. and Wan, M., The SDSC Storage Resource Broker. In
Proc. CASCON'98 Conference, (1998)

10. Beiriger, J., Johnson, W., Bivens, H., Humphreys, S. and Rhea, R., Constructing the
ASCI Grid. In Proc. 9th IEEE Symposium on High Performance Distributed Computing,
(2000), IEEE Press

11. Benger, W., Foster, I., Novotny, J., Seidel, E., Shalf, J., Smith, W. and Walker, P.,
Numerical Relativity in a Distributed Environment. In Proc. 9th SIAM Conference on
Parallel Processing for Scientific Computing, (1999)

12. Berman, F. High-Performance Schedulers. In Foster, I. and Kesselman, C. eds. The Grid:
Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 279-309.

13. Berman, F., Wolski, R., Figueira, S., Schopf, J. and Shao, G. Application-Level
Scheduling on Distributed Heterogeneous Networks. In Proc. Supercomputing '96, 1996.

14. Beynon, M., Ferreira, R., Kurc, T., Sussman, A. and Saltz, J., DataCutter: Middleware for
Filtering Very Large Scientific Datasets on Archival Storage Systems. In Proc. 8th
Goddard Conference on Mass Storage Systems and Technologies/17th IEEE Symposium
on Mass Storage Systems, (2000), 119-133

15. Bolcer, G.A. and Kaiser, G.E. SWAP: Leveraging the Web To Manage Workflow. IEEE
Internet Computing, 3 (1). 85-88. 1999.

16. Brunett, S., Czajkowski, K., Fitzgerald, S., Foster, I., Johnson, A., Kesselman, C., Leigh,
J. and Tuecke, S., Application Experiences with the Globus Toolkit. In Proc. 7th IEEE
Symp. on High Performance Distributed Computing, (1998), IEEE Press, 81-89

The Anatomy of the Grid 22

17. Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J. and Welch, V.
Design and Deployment of a National-Scale Authentication Infrastructure. IEEE
Computer, 33 (12). 60-66. 2000.

18. Camarinha-Matos, L.M., Afsarmanesh, H., Garita, C. and Lima, C. Towards an
Architecture for Virtual Enterprises. J. Intelligent Manufacturing, 9 (2). 189-199. 1998.

19. Casanova, H. and Dongarra, J. NetSolve: A Network Server for Solving Computational
Science Problems. International Journal of Supercomputer Applications and High
Performance Computing, 11 (3). 212-223. 1997.

20. Casanova, H., Dongarra, J., Johnson, C. and Miller, M. Application-Specific Tools. In
Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999, 159-180.

21. Casanova, H., Obertelli, G., Berman, F. and Wolski, R., The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid. In Proc. SC'2000, (2000)

22. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and Tuecke, S. The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Data Sets. J. Network and Computer Applications (23). 187-200. 2001.

23. Childers, L., Disz, T., Olson, R., Papka, M.E., Stevens, R. and Udeshi, T. Access Grid:
Immersive Group-to-Group Collaborative Visualization. In Proc. 4th International
Immersive Projection Technology Workshop, 2000.

24. Clarke, I., Sandberg, O., Wiley, B. and Hong, T.W., Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In ICSI Workshop on Design Issues in
Anonymity and Unobservability, (1999). http://freenet.sourceforge.net/icsi.ps

25. Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C., Grid Information Services
for Distributed Resource Sharing. In 10th IEEE International Symposium on High
Performance Distributed Computing, (2001), IEEE Press, 181-184

26. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W. and Tuecke,
S. A Resource Management Architecture for Metacomputing Systems. In The 4th
Workshop on Job Scheduling Strategies for Parallel Processing, 1998, 62-82.

27. Czajkowski, K., Foster, I. and Kesselman, C., Co-allocation Services for Computational
Grids. In Proc. 8th IEEE Symposium on High Performance Distributed Computing,
(1999), IEEE Press

28. DeFanti, T. and Stevens, R. Teleimmersion. In Foster, I. and Kesselman, C. eds. The
Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 131-155.

29. Dierks, T. and Allen, C. The TLS Protocol Version 1.0. IETF, RFC, 1999.
30. Dinda, P. and O'Hallaron, D., An Evaluation of Linear Models for Host Load Prediction.

In Proc. 8th IEEE Symposium on High-Performance Distributed Computing, (1999),
IEEE Press

31. Foster, I. Internet Computing and the Emerging Grid. Nature Web Matters. 2000.
http://www.nature.com/nature/webmatters/grid/grid.html.

32. Foster, I. and Karonis, N. A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems. In Proc. SC'98, 1998.

33. Foster, I. and Kesselman, C. The Globus Project: A Status Report. In Proc.
Heterogeneous Computing Workshop, IEEE Press, 1998, 4-18.

34. Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

35. Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S. A Security Architecture for
Computational Grids. In ACM Conference on Computers and Security, 1998, 83-91.

36. Foster, I., Roy, A. and Sander, V., A Quality of Service Architecture that Combines
Resource Reservation and Application Adaptation. In Proc. 8th International Workshop
on Quality of Service, (2000)

The Anatomy of the Grid 23

37. Frey, J., Tannenbaum, T., Foster, I., Livny, M. and Tuecke, S., Condor-G: A
Computation Management Agent for Multi-Institutional Grids. In 10th International
Symposium on High Performance Distributed Computing, (2001), IEEE Press, 55-66

38. Gabriel, E., Resch, M., Beisel, T. and Keller, R. Distributed Computing in a
Heterogenous Computing Environment. In Proc. EuroPVM/MPI'98, 1998.

39. Gannon, D. and Grimshaw, A. Object-Based Approaches. In Foster, I. and Kesselman, C.
eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999,
205-236.

40. Gasser, M. and McDermott, E., An Architecture for Practical Delegation in a Distributed
System. In Proc. 1990 IEEE Symposium on Research in Security and Privacy, (1990),
IEEE Press, 20-30

41. Goux, J.-P., Kulkarni, S., Linderoth, J. and Yoder, M., An Enabling Framework for
Master-Worker Applications on the Computational Grid. In Proc. 9th IEEE Symp. on
High Performance Distributed Computing, (2000), IEEE Press

42. Grimshaw, A. and Wulf, W., Legion -- A View from 50,000 Feet. In Proc. 5th IEEE
Symposium on High Performance Distributed Computing, (1996), IEEE Press, 89-99

43. Gropp, W., Lusk, E. and Skjellum, A. Using MPI: Portable Parallel Programming with
the Message Passing Interface. MIT Press, 1994.

44. Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H. and Stockinger, K., Data
Management in an International Data Grid Project. In Proc. 1st IEEE/ACM International
Workshop on Grid Computing, (2000), Springer Verlag Press

45. Howell, J. and Kotz, D., End-to-end authorization. In Proc. 2000 Symposium on
Operating Systems Design and Implementation, (2000), USENIX Association.
http://www.cs.dartmouth.edu/~jonh/research/osdi2000/html/osdi.html

46. Johnston, W.E., Gannon, D. and Nitzberg, B., Grids as Production Computing
Environments: The Engineering Aspects of NASA's Information Power Grid. In Proc.
8th IEEE Symposium on High Performance Distributed Computing, (1999), IEEE Press

47. Leigh, J., Johnson, A. and DeFanti, T.A. CAVERN: A Distributed Architecture for
Supporting Scalable Persistence and Interoperability in Collaborative Virtual
Environments. Virtual Reality: Research, Development and Applications, 2 (2). 217-237.
1997.

48. Linn, J. Generic Security Service Application Program Interface Version 2, Update 1.
IETF, RFC, 2000.

49. Litzkow, M., Livny, M. and Mutka, M. Condor - A Hunter of Idle Workstations. In Proc.
8th Intl Conf. on Distributed Computing Systems, 1988, 104-111.

50. Livny, M. High-Throughput Resource Management. In Foster, I. and Kesselman, C. eds.
The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 1999, 311-
337.

51. Lopez, I., Follen, G., Gutierrez, R., Foster, I., Ginsburg, B., Larsson, O., S. Martin and
Tuecke, S., NPSS on NASA's IPG: Using CORBA and Globus to Coordinate
Multidisciplinary Aeroscience Applications. In Proc. NASA HPCC/CAS Workshop,
(NASA Ames Research Center, 2000). http://accl.lerc.nasa.gov/IPG/CORBA/

52. Lowekamp, B., Miller, N., Sutherland, D., Gross, T., Steenkiste, P. and Subhlok, J., A
Resource Query Interface for Network-Aware Applications. In Proc. 7th IEEE
Symposium on High-Performance Distributed Computing, (1998), IEEE Press

53. Moore, R., Baru, C., Marciano, R., Rajasekar, A. and Wan, M. Data-Intensive
Computing. In Foster, I. and Kesselman, C. eds. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1999, 105-129.

54. Nakada, H., Sato, M. and Sekiguchi, S. Design and Implementations of Ninf: towards a
Global Computing Infrastructure. Future Generation Computing Systems, 15 (5-6). 649-
658. 1999.

The Anatomy of the Grid 24

55. Novotny, J., Tuecke, S. and Welch, V., An Online Credential Repository for the Grid:
MyProxy. In 10th IEEE International Symposium on High Performance Distributed
Computing, (2001), IEEE Press, 104-111

56. Papakhian, M. Comparing Job-Management Systems: The User's Perspective. IEEE
Computationial Science & Engineering (April-June). 1998. See also http://pbs.mrj.com.

57. Sculley, A. and Woods, W. B2B Exchanges: The Killer Application in the Business-to-
Business Internet Revolution. ISI Publications, 2000.

58. Steiner, J., Neuman, B.C. and Schiller, J., Kerberos: An Authentication System for Open
Network Systems. In Proc. Usenix Conference, (1988), 191-202

59. Stevens, R., Woodward, P., DeFanti, T. and Catlett, C. From the I-WAY to the National
Technology Grid. Communications of the ACM, 40 (11). 50-61. 1997.

60. Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K. and Essiari, A.
Certificate-based Access Control for Widely Distributed Resources. In Proc. 8th Usenix
Security Symposium, 1999.

61. Tierney, B., Johnston, W., Lee, J. and Hoo, G. Performance Analysis in High-Speed
Wide Area IP over ATM Networks: Top-to-Bottom End-to-End Monitoring. IEEE
Network, 10 (3). 1996.

62. Vahdat, A., Belani, E., Eastham, P., Yoshikawa, C., Anderson, T., Culler, D. and Dahlin,
M. WebOS: Operating System Services For Wide Area Applications. In 7th Symposium
on High Performance Distributed Computing, July 1998.

63. Wolski, R. Forecasting Network Performance to Support Dynamic Scheduling Using the
Network Weather Service. In Proc. 6th IEEE Symp. on High Performance Distributed
Computing, Portland, Oregon, 1997.

